
Chapter 1

Computer Abstractions

and Technology

Chapter 1 — Computer Abstractions and Technology — 2

The Computer Revolution

 Progress in computer technology

 Underpinned by Moore’s Law

 Makes novel applications feasible

 Computers in automobiles

 Cell phones

 Human genome project

 World Wide Web

 Search Engines

 Computers are pervasive

§
1
.1

 In
tro

d
u
c
tio

n

Chapter 1 — Computer Abstractions and Technology — 3

Classes of Computers

 Desktop computers

 General purpose, variety of software

 Subject to cost/performance tradeoff

 Server computers

 Network based

 High capacity, performance, reliability

 Range from small servers to building sized

 Embedded computers

 Hidden as components of systems

 Stringent power/performance/cost constraints

Chapter 1 — Computer Abstractions and Technology — 4

The Processor Market

Chapter 1 — Computer Abstractions and Technology — 5

What You Will Learn

 How programs are translated into the

machine language

 And how the hardware executes them

 The hardware/software interface

 What determines program performance

 And how it can be improved

 How hardware designers improve

performance

 What is parallel processing

Chapter 1 — Computer Abstractions and Technology — 6

Understanding Performance

 Algorithm

 Determines number of operations executed

 Programming language, compiler, architecture

 Determine number of machine instructions executed

per operation

 Processor and memory system

 Determine how fast instructions are executed

 I/O system (including OS)

 Determines how fast I/O operations are executed

Chapter 1 — Computer Abstractions and Technology — 7

Below Your Program

 Application software

 Written in high-level language

 System software

 Compiler: translates HLL code to

machine code

 Operating System: service code

 Handling input/output

 Managing memory and storage

 Scheduling tasks & sharing resources

 Hardware

 Processor, memory, I/O controllers

§
1
.2

 B
e
lo

w
 Y

o
u
r P

ro
g
ra

m

Chapter 1 — Computer Abstractions and Technology — 8

Levels of Program Code

 High-level language
 Level of abstraction closer

to problem domain

 Provides for productivity
and portability

 Assembly language
 Textual representation of

instructions

 Hardware representation
 Binary digits (bits)

 Encoded instructions and
data

Chapter 1 — Computer Abstractions and Technology — 9

Components of a Computer

 Same components for

all kinds of computer

 Desktop, server,

embedded

 Input/output includes

 User-interface devices

 Display, keyboard, mouse

 Storage devices

 Hard disk, CD/DVD, flash

 Network adapters

 For communicating with

other computers

§
1
.3

 U
n
d
e
r th

e
 C

o
v
e
rs

The BIG Picture

Chapter 1 — Computer Abstractions and Technology — 10

Anatomy of a Computer

Output

device

Input

device

Input

device

Network

cable

Chapter 1 — Computer Abstractions and Technology — 11

Anatomy of a Mouse

 Optical mouse

 LED illuminates

desktop

 Small low-res camera

 Basic image processor

 Looks for x, y

movement

 Buttons & wheel

 Supersedes roller-ball

mechanical mouse

Chapter 1 — Computer Abstractions and Technology — 12

Through the Looking Glass

 LCD screen: picture elements (pixels)

 Mirrors content of frame buffer memory

Chapter 1 — Computer Abstractions and Technology — 13

Opening the Box

Chapter 1 — Computer Abstractions and Technology — 14

Inside the Processor (CPU)

 Datapath: performs operations on data

 Control: sequences datapath, memory, ...

 Cache memory

 Small fast SRAM memory for immediate

access to data

Chapter 1 — Computer Abstractions and Technology — 15

Inside the Processor

 AMD Barcelona: 4 processor cores

Chapter 1 — Computer Abstractions and Technology — 16

Abstractions

 Abstraction helps us deal with complexity

 Hide lower-level detail

 Instruction set architecture (ISA)

 The hardware/software interface

 Application binary interface

 The ISA plus system software interface

 Implementation

 The details underlying and interface

The BIG Picture

Chapter 1 — Computer Abstractions and Technology — 17

A Safe Place for Data

 Volatile main memory

 Loses instructions and data when power off

 Non-volatile secondary memory

 Magnetic disk

 Flash memory

 Optical disk (CDROM, DVD)

Chapter 1 — Computer Abstractions and Technology — 18

Networks

 Communication and resource sharing

 Local area network (LAN): Ethernet

 Within a building

 Wide area network (WAN: the Internet

 Wireless network: WiFi, Bluetooth

Chapter 1 — Computer Abstractions and Technology — 19

Technology Trends

 Electronics

technology

continues to evolve

 Increased capacity

and performance

 Reduced cost

Year Technology Relative performance/cost

1951 Vacuum tube 1

1965 Transistor 35

1975 Integrated circuit (IC) 900

1995 Very large scale IC (VLSI) 2,400,000

2005 Ultra large scale IC 6,200,000,000

DRAM capacity

Chapter 2 — Instructions: Language of the Computer — 20

Instruction Set

 The repertoire of instructions of a
computer

 Different computers have different
instruction sets

 But with many aspects in common

 Early computers had very simple
instruction sets

 Simplified implementation

 Many modern computers also have simple
instruction sets

§
2
.1

 In
tro

d
u
c
tio

n

Chapter 2 — Instructions: Language of the Computer — 21

The MIPS Instruction Set

 Used as the example throughout the book

 Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)

 Large share of embedded core market

 Applications in consumer electronics, network/storage

equipment, cameras, printers, …

 Typical of many modern ISAs

 See MIPS Reference Data tear-out card, and

Appendixes B and E

http://www.mips.com/

Chapter 2 — Instructions: Language of the Computer — 22

Arithmetic Operations

 Add and subtract, three operands

 Two sources and one destination

add a, b, c # a gets b + c

 All arithmetic operations have this form

 Design Principle 1: Simplicity favours

regularity

 Regularity makes implementation simpler

 Simplicity enables higher performance at

lower cost

§
2
.2

 O
p

e
ra

tio
n
s
 o

f th
e
 C

o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 23

Arithmetic Example

 C code:

f = (g + h) - (i + j);

 Compiled MIPS code:

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 24

Register Operands

 Arithmetic instructions use register
operands

 MIPS has a 32 × 32-bit register file
 Use for frequently accessed data

 Numbered 0 to 31

 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values

 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 c.f. main memory: millions of locations

§
2
.3

 O
p

e
ra

n
d
s
 o

f th
e
 C

o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 25

Register Operand Example

 C code:

f = (g + h) - (i + j);

 f, …, j in $s0, …, $s4

 Compiled MIPS code:

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 26

Memory Operands

 Main memory used for composite data
 Arrays, structures, dynamic data

 To apply arithmetic operations
 Load values from memory into registers

 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian
 Most-significant byte at least address of a word

 c.f. Little Endian: least-significant byte at least address

Chapter 2 — Instructions: Language of the Computer — 27

Memory Operand Example 1

 C code:

g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:

 Index 8 requires offset of 32

 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 28

Memory Operand Example 2

 C code:

A[12] = h + A[8];

 h in $s2, base address of A in $s3

 Compiled MIPS code:

 Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 29

Registers vs. Memory

 Registers are faster to access than
memory

 Operating on memory data requires loads
and stores

 More instructions to be executed

 Compiler must use registers for variables
as much as possible

 Only spill to memory for less frequently used
variables

 Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 30

Immediate Operands

 Constant data specified in an instruction

addi $s3, $s3, 4

 No subtract immediate instruction

 Just use a negative constant

addi $s2, $s1, -1

 Design Principle 3: Make the common

case fast

 Small constants are common

 Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 31

The Constant Zero

 MIPS register 0 ($zero) is the constant 0

 Cannot be overwritten

 Useful for common operations

 E.g., move between registers

add $t2, $s1, $zero

Chapter 2 — Instructions: Language of the Computer — 32

Unsigned Binary Integers

 Given an n-bit number

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx  





 

 Range: 0 to +2n – 1

 Example
 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits

 0 to +4,294,967,295

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e
rs

Chapter 2 — Instructions: Language of the Computer — 33

2s-Complement Signed Integers

 Given an n-bit number

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx  





 

 Range: –2n – 1 to +2n – 1 – 1

 Example
 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits

 –2,147,483,648 to +2,147,483,647

Chapter 2 — Instructions: Language of the Computer — 34

2s-Complement Signed Integers

 Bit 31 is sign bit
 1 for negative numbers

 0 for non-negative numbers

 –(–2n – 1) can’t be represented

 Non-negative numbers have the same unsigned
and 2s-complement representation

 Some specific numbers
 0: 0000 0000 … 0000

 –1: 1111 1111 … 1111

 Most-negative: 1000 0000 … 0000

 Most-positive: 0111 1111 … 1111

Chapter 2 — Instructions: Language of the Computer — 35

Signed Negation

 Complement and add 1

 Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2





 Example: negate +2

 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1

= 1111 1111 … 11102

Chapter 2 — Instructions: Language of the Computer — 36

Sign Extension

 Representing a number using more bits
 Preserve the numeric value

 In MIPS instruction set
 addi: extend immediate value

 lb, lh: extend loaded byte/halfword

 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010

 –2: 1111 1110 => 1111 1111 1111 1110

Chapter 2 — Instructions: Language of the Computer — 37

Representing Instructions

 Instructions are encoded in binary

 Called machine code

 MIPS instructions

 Encoded as 32-bit instruction words

 Small number of formats encoding operation code

(opcode), register numbers, …

 Regularity!

 Register numbers

 $t0 – $t7 are reg’s 8 – 15

 $t8 – $t9 are reg’s 24 – 25

 $s0 – $s7 are reg’s 16 – 23

§
2
.5

 R
e
p
re

s
e
n
tin

g
 In

s
tru

c
tio

n
s
 in

 th
e
 C

o
m

p
u
te

r

