
Chapter 1

Computer Abstractions

and Technology

Chapter 1 — Computer Abstractions and Technology — 2

The Computer Revolution

 Progress in computer technology

 Underpinned by Moore’s Law

 Makes novel applications feasible

 Computers in automobiles

 Cell phones

 Human genome project

 World Wide Web

 Search Engines

 Computers are pervasive

§
1
.1

 In
tro

d
u
c
tio

n

Chapter 1 — Computer Abstractions and Technology — 3

Classes of Computers

 Desktop computers

 General purpose, variety of software

 Subject to cost/performance tradeoff

 Server computers

 Network based

 High capacity, performance, reliability

 Range from small servers to building sized

 Embedded computers

 Hidden as components of systems

 Stringent power/performance/cost constraints

Chapter 1 — Computer Abstractions and Technology — 4

The Processor Market

Chapter 1 — Computer Abstractions and Technology — 5

What You Will Learn

 How programs are translated into the

machine language

 And how the hardware executes them

 The hardware/software interface

 What determines program performance

 And how it can be improved

 How hardware designers improve

performance

 What is parallel processing

Chapter 1 — Computer Abstractions and Technology — 6

Understanding Performance

 Algorithm

 Determines number of operations executed

 Programming language, compiler, architecture

 Determine number of machine instructions executed

per operation

 Processor and memory system

 Determine how fast instructions are executed

 I/O system (including OS)

 Determines how fast I/O operations are executed

Chapter 1 — Computer Abstractions and Technology — 7

Below Your Program

 Application software

 Written in high-level language

 System software

 Compiler: translates HLL code to

machine code

 Operating System: service code

 Handling input/output

 Managing memory and storage

 Scheduling tasks & sharing resources

 Hardware

 Processor, memory, I/O controllers

§
1
.2

 B
e
lo

w
 Y

o
u
r P

ro
g
ra

m

Chapter 1 — Computer Abstractions and Technology — 8

Levels of Program Code

 High-level language
 Level of abstraction closer

to problem domain

 Provides for productivity
and portability

 Assembly language
 Textual representation of

instructions

 Hardware representation
 Binary digits (bits)

 Encoded instructions and
data

Chapter 1 — Computer Abstractions and Technology — 9

Components of a Computer

 Same components for

all kinds of computer

 Desktop, server,

embedded

 Input/output includes

 User-interface devices

 Display, keyboard, mouse

 Storage devices

 Hard disk, CD/DVD, flash

 Network adapters

 For communicating with

other computers

§
1
.3

 U
n
d
e
r th

e
 C

o
v
e
rs

The BIG Picture

Chapter 1 — Computer Abstractions and Technology — 10

Anatomy of a Computer

Output

device

Input

device

Input

device

Network

cable

Chapter 1 — Computer Abstractions and Technology — 11

Anatomy of a Mouse

 Optical mouse

 LED illuminates

desktop

 Small low-res camera

 Basic image processor

 Looks for x, y

movement

 Buttons & wheel

 Supersedes roller-ball

mechanical mouse

Chapter 1 — Computer Abstractions and Technology — 12

Through the Looking Glass

 LCD screen: picture elements (pixels)

 Mirrors content of frame buffer memory

Chapter 1 — Computer Abstractions and Technology — 13

Opening the Box

Chapter 1 — Computer Abstractions and Technology — 14

Inside the Processor (CPU)

 Datapath: performs operations on data

 Control: sequences datapath, memory, ...

 Cache memory

 Small fast SRAM memory for immediate

access to data

Chapter 1 — Computer Abstractions and Technology — 15

Inside the Processor

 AMD Barcelona: 4 processor cores

Chapter 1 — Computer Abstractions and Technology — 16

Abstractions

 Abstraction helps us deal with complexity

 Hide lower-level detail

 Instruction set architecture (ISA)

 The hardware/software interface

 Application binary interface

 The ISA plus system software interface

 Implementation

 The details underlying and interface

The BIG Picture

Chapter 1 — Computer Abstractions and Technology — 17

A Safe Place for Data

 Volatile main memory

 Loses instructions and data when power off

 Non-volatile secondary memory

 Magnetic disk

 Flash memory

 Optical disk (CDROM, DVD)

Chapter 1 — Computer Abstractions and Technology — 18

Networks

 Communication and resource sharing

 Local area network (LAN): Ethernet

 Within a building

 Wide area network (WAN: the Internet

 Wireless network: WiFi, Bluetooth

Chapter 1 — Computer Abstractions and Technology — 19

Technology Trends

 Electronics

technology

continues to evolve

 Increased capacity

and performance

 Reduced cost

Year Technology Relative performance/cost

1951 Vacuum tube 1

1965 Transistor 35

1975 Integrated circuit (IC) 900

1995 Very large scale IC (VLSI) 2,400,000

2005 Ultra large scale IC 6,200,000,000

DRAM capacity

Chapter 2 — Instructions: Language of the Computer — 20

Instruction Set

 The repertoire of instructions of a
computer

 Different computers have different
instruction sets

 But with many aspects in common

 Early computers had very simple
instruction sets

 Simplified implementation

 Many modern computers also have simple
instruction sets

§
2
.1

 In
tro

d
u
c
tio

n

Chapter 2 — Instructions: Language of the Computer — 21

The MIPS Instruction Set

 Used as the example throughout the book

 Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)

 Large share of embedded core market

 Applications in consumer electronics, network/storage

equipment, cameras, printers, …

 Typical of many modern ISAs

 See MIPS Reference Data tear-out card, and

Appendixes B and E

http://www.mips.com/

Chapter 2 — Instructions: Language of the Computer — 22

Arithmetic Operations

 Add and subtract, three operands

 Two sources and one destination

add a, b, c # a gets b + c

 All arithmetic operations have this form

 Design Principle 1: Simplicity favours

regularity

 Regularity makes implementation simpler

 Simplicity enables higher performance at

lower cost

§
2
.2

 O
p

e
ra

tio
n
s
 o

f th
e
 C

o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 23

Arithmetic Example

 C code:

f = (g + h) - (i + j);

 Compiled MIPS code:

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 24

Register Operands

 Arithmetic instructions use register
operands

 MIPS has a 32 × 32-bit register file
 Use for frequently accessed data

 Numbered 0 to 31

 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values

 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 c.f. main memory: millions of locations

§
2
.3

 O
p

e
ra

n
d
s
 o

f th
e
 C

o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 25

Register Operand Example

 C code:

f = (g + h) - (i + j);

 f, …, j in $s0, …, $s4

 Compiled MIPS code:

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 26

Memory Operands

 Main memory used for composite data
 Arrays, structures, dynamic data

 To apply arithmetic operations
 Load values from memory into registers

 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian
 Most-significant byte at least address of a word

 c.f. Little Endian: least-significant byte at least address

Chapter 2 — Instructions: Language of the Computer — 27

Memory Operand Example 1

 C code:

g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:

 Index 8 requires offset of 32

 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 28

Memory Operand Example 2

 C code:

A[12] = h + A[8];

 h in $s2, base address of A in $s3

 Compiled MIPS code:

 Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 29

Registers vs. Memory

 Registers are faster to access than
memory

 Operating on memory data requires loads
and stores

 More instructions to be executed

 Compiler must use registers for variables
as much as possible

 Only spill to memory for less frequently used
variables

 Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 30

Immediate Operands

 Constant data specified in an instruction

addi $s3, $s3, 4

 No subtract immediate instruction

 Just use a negative constant

addi $s2, $s1, -1

 Design Principle 3: Make the common

case fast

 Small constants are common

 Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 31

The Constant Zero

 MIPS register 0 ($zero) is the constant 0

 Cannot be overwritten

 Useful for common operations

 E.g., move between registers

add $t2, $s1, $zero

Chapter 2 — Instructions: Language of the Computer — 32

Unsigned Binary Integers

 Given an n-bit number

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx

 Range: 0 to +2n – 1

 Example
 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits

 0 to +4,294,967,295

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e
rs

Chapter 2 — Instructions: Language of the Computer — 33

2s-Complement Signed Integers

 Given an n-bit number

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx

 Range: –2n – 1 to +2n – 1 – 1

 Example
 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits

 –2,147,483,648 to +2,147,483,647

Chapter 2 — Instructions: Language of the Computer — 34

2s-Complement Signed Integers

 Bit 31 is sign bit
 1 for negative numbers

 0 for non-negative numbers

 –(–2n – 1) can’t be represented

 Non-negative numbers have the same unsigned
and 2s-complement representation

 Some specific numbers
 0: 0000 0000 … 0000

 –1: 1111 1111 … 1111

 Most-negative: 1000 0000 … 0000

 Most-positive: 0111 1111 … 1111

Chapter 2 — Instructions: Language of the Computer — 35

Signed Negation

 Complement and add 1

 Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2

 Example: negate +2

 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1

= 1111 1111 … 11102

Chapter 2 — Instructions: Language of the Computer — 36

Sign Extension

 Representing a number using more bits
 Preserve the numeric value

 In MIPS instruction set
 addi: extend immediate value

 lb, lh: extend loaded byte/halfword

 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010

 –2: 1111 1110 => 1111 1111 1111 1110

Chapter 2 — Instructions: Language of the Computer — 37

Representing Instructions

 Instructions are encoded in binary

 Called machine code

 MIPS instructions

 Encoded as 32-bit instruction words

 Small number of formats encoding operation code

(opcode), register numbers, …

 Regularity!

 Register numbers

 $t0 – $t7 are reg’s 8 – 15

 $t8 – $t9 are reg’s 24 – 25

 $s0 – $s7 are reg’s 16 – 23

§
2
.5

 R
e
p
re

s
e
n
tin

g
 In

s
tru

c
tio

n
s
 in

 th
e
 C

o
m

p
u
te

r

