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The Computer Revolution

 Progress in computer technology

 Underpinned by Moore’s Law 

 Makes novel applications feasible

 Computers in automobiles

 Cell phones

 Human genome project

 World Wide Web

 Search Engines

 Computers are pervasive
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Classes of Computers

 Desktop computers

 General purpose, variety of software

 Subject to cost/performance tradeoff

 Server computers

 Network based

 High capacity, performance, reliability

 Range from small servers to building sized

 Embedded computers

 Hidden as components of systems

 Stringent power/performance/cost constraints
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The Processor Market
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What You Will Learn

 How programs are translated into the 

machine language

 And how the hardware executes them

 The hardware/software interface

 What determines program performance

 And how it can be improved

 How hardware designers improve 

performance

 What is parallel processing
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Understanding Performance

 Algorithm

 Determines number of operations executed

 Programming language, compiler, architecture

 Determine number of machine instructions executed 

per operation

 Processor and memory system

 Determine how fast instructions are executed

 I/O system (including OS)

 Determines how fast I/O operations are executed
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Below Your Program

 Application software

 Written in high-level language

 System software

 Compiler: translates HLL code to 

machine code

 Operating System: service code

 Handling input/output

 Managing memory and storage

 Scheduling tasks & sharing resources

 Hardware

 Processor, memory, I/O controllers
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Levels of Program Code

 High-level language
 Level of abstraction closer 

to problem domain

 Provides for productivity 
and portability 

 Assembly language
 Textual representation of 

instructions

 Hardware representation
 Binary digits (bits)

 Encoded instructions and 
data
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Components of a Computer

 Same components for

all kinds of computer

 Desktop, server,

embedded

 Input/output includes

 User-interface devices

 Display, keyboard, mouse

 Storage devices

 Hard disk, CD/DVD, flash

 Network adapters

 For communicating with 

other computers
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Anatomy of a Computer

Output 

device

Input 

device

Input 

device

Network 

cable
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Anatomy of a Mouse

 Optical mouse

 LED illuminates 

desktop

 Small low-res camera

 Basic image processor

 Looks for x, y 

movement

 Buttons & wheel

 Supersedes roller-ball 

mechanical mouse
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Through the Looking Glass

 LCD screen: picture elements (pixels)

 Mirrors content of frame buffer memory
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Opening the Box
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Inside the Processor (CPU)

 Datapath: performs operations on data

 Control: sequences datapath, memory, ...

 Cache memory

 Small fast SRAM memory for immediate 

access to data
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Inside the Processor

 AMD Barcelona: 4 processor cores
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Abstractions

 Abstraction helps us deal with complexity

 Hide lower-level detail

 Instruction set architecture (ISA)

 The hardware/software interface

 Application binary interface

 The ISA plus system software interface

 Implementation

 The details underlying and interface

The BIG Picture
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A Safe Place for Data

 Volatile main memory

 Loses instructions and data when power off

 Non-volatile secondary memory

 Magnetic disk

 Flash memory

 Optical disk (CDROM, DVD)
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Networks

 Communication and resource sharing

 Local area network (LAN): Ethernet

 Within a building

 Wide area network (WAN: the Internet

 Wireless network: WiFi, Bluetooth
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Technology Trends

 Electronics 

technology 

continues to evolve

 Increased capacity 

and performance

 Reduced cost

Year Technology Relative performance/cost

1951 Vacuum tube 1

1965 Transistor 35

1975 Integrated circuit (IC) 900

1995 Very large scale IC (VLSI) 2,400,000

2005 Ultra large scale IC 6,200,000,000

DRAM capacity
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Instruction Set

 The repertoire of instructions of a 
computer

 Different computers have different 
instruction sets

 But with many aspects in common

 Early computers had very simple 
instruction sets

 Simplified implementation

 Many modern computers also have simple 
instruction sets
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The MIPS Instruction Set

 Used as the example throughout the book

 Stanford MIPS commercialized by MIPS 

Technologies (www.mips.com)

 Large share of embedded core market

 Applications in consumer electronics, network/storage 

equipment, cameras, printers, …

 Typical of many modern ISAs

 See MIPS Reference Data tear-out card, and 

Appendixes B and E

http://www.mips.com/
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Arithmetic Operations

 Add and subtract, three operands

 Two sources and one destination

add a, b, c  # a gets b + c

 All arithmetic operations have this form

 Design Principle 1: Simplicity favours 

regularity

 Regularity makes implementation simpler

 Simplicity enables higher performance at 

lower cost
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Arithmetic Example

 C code:

f = (g + h) - (i + j);

 Compiled MIPS code:

add t0, g, h   # temp t0 = g + h
add t1, i, j   # temp t1 = i + j
sub f, t0, t1  # f = t0 - t1
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Register Operands

 Arithmetic instructions use register
operands

 MIPS has a 32 × 32-bit register file
 Use for frequently accessed data

 Numbered 0 to 31

 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values

 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 c.f. main memory: millions of locations
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Register Operand Example

 C code:

f = (g + h) - (i + j);

 f, …, j in $s0, …, $s4

 Compiled MIPS code:

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1
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Memory Operands

 Main memory used for composite data
 Arrays, structures, dynamic data

 To apply arithmetic operations
 Load values from memory into registers

 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian
 Most-significant byte at least address of a word

 c.f. Little Endian: least-significant byte at least address
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Memory Operand Example 1

 C code:

g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:

 Index 8 requires offset of 32

 4 bytes per word

lw  $t0, 32($s3)    # load word
add $s1, $s2, $t0

offset base register
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Memory Operand Example 2

 C code:

A[12] = h + A[8];

 h in $s2, base address of A in $s3

 Compiled MIPS code:

 Index 8 requires offset of 32

lw  $t0, 32($s3)    # load word
add $t0, $s2, $t0
sw  $t0, 48($s3)    # store word
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Registers vs. Memory

 Registers are faster to access than 
memory

 Operating on memory data requires loads 
and stores

 More instructions to be executed

 Compiler must use registers for variables 
as much as possible

 Only spill to memory for less frequently used 
variables

 Register optimization is important!
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Immediate Operands

 Constant data specified in an instruction

addi $s3, $s3, 4

 No subtract immediate instruction

 Just use a negative constant

addi $s2, $s1, -1

 Design Principle 3: Make the common 

case fast

 Small constants are common

 Immediate operand avoids a load instruction
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The Constant Zero

 MIPS register 0 ($zero) is the constant 0

 Cannot be overwritten

 Useful for common operations

 E.g., move between registers

add $t2, $s1, $zero
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Unsigned Binary Integers

 Given an n-bit number

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx  





 

 Range: 0 to +2n – 1

 Example
 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits

 0 to +4,294,967,295
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2s-Complement Signed Integers

 Given an n-bit number

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx  





 

 Range: –2n – 1 to +2n – 1 – 1

 Example
 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits

 –2,147,483,648 to +2,147,483,647
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2s-Complement Signed Integers

 Bit 31 is sign bit
 1 for negative numbers

 0 for non-negative numbers

 –(–2n – 1) can’t be represented

 Non-negative numbers have the same unsigned 
and 2s-complement representation

 Some specific numbers
 0: 0000 0000 … 0000

 –1: 1111 1111 … 1111

 Most-negative: 1000 0000 … 0000

 Most-positive: 0111 1111 … 1111
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Signed Negation

 Complement and add 1

 Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2





 Example: negate +2

 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1

= 1111 1111 … 11102
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Sign Extension

 Representing a number using more bits
 Preserve the numeric value

 In MIPS instruction set
 addi: extend immediate value

 lb, lh: extend loaded byte/halfword

 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010

 –2: 1111 1110 => 1111 1111 1111 1110
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Representing Instructions

 Instructions are encoded in binary

 Called machine code

 MIPS instructions

 Encoded as 32-bit instruction words

 Small number of formats encoding operation code 

(opcode), register numbers, …

 Regularity!

 Register numbers

 $t0 – $t7 are reg’s 8 – 15

 $t8 – $t9 are reg’s 24 – 25

 $s0 – $s7 are reg’s 16 – 23
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