o COMPUTER ORGANIZATION AND DESIGN *@Rj»

<
[e]

The Hardware/Software Interface

Chapter 1

Computer Abstractions
and Technology

The Computer Revolution

Progress in computer technology
Underpinned by Moore’s Law

Makes novel applications feasible
Computers in automobiles
Cell phones
Human genome project
World Wide Web
Search Engines

Computers are pervasive

Chapter 1 — Computer Abstractions and Technology — 2

Classes of Computers

Desktop computers
General purpose, variety of software
Subject to cost/performance tradeoff
Server computers
Network based
High capacity, performance, reliability
Range from small servers to building sized
Embedded computers

Hidden as components of systems
Stringent power/performance/cost constraints

Chapter 1 — Computer Abstractions and Technology — 3

The Processor Market

[Cell Phones B PCs [OTVs

Chapter 1 — Computer Abstractions and Technology — 4

What You Will Learn

How programs are translated into the
machine language
And how the hardware executes them

The hardware/software interface

What determines program performance
And how It can be improved

How hardware designers improve
performance

What is parallel processing

Chapter 1 — Computer Abstractions and Technology — 5

Understanding Performance

Algorithm
Determines number of operations executed

Programming language, compiler, architecture

Determine number of machine instructions executed
per operation

Processor and memory system
Determine how fast instructions are executed

/O system (including OS)
Determines how fast I/O operations are executed

Chapter 1 — Computer Abstractions and Technology — 6

Below Your Program

Application software
Written in high-level language

System software

Compiler: translates HLL code to
machine code

Operating System: service code
Handling input/output
Managing memory and storage
Scheduling tasks & sharing resources

Hardware
Processor, memory, |I/O controllers

Chapter 1 — Computer Abstractions and Technology — 7

Levels of Program Code

ngh_level Ianguage High-level swap(int v[], int k)

language {int temp;
program temp = v[k];

Level of abstraction closer (inC) VK] = vk

to problem domain

vlk+1l] = temp;
}

Provides for productivity Coomier

and portability

Assembly language gt T
: {or MIPS) w15, 0(s2)
Textual representation of b sis4(s2)
Instructions w15, 4052)
Hardware representation
. . . . ssembler
Binary digits (bits) G
EnCOded InStrUCtlonS and Binary machine OOOOOOOOlOl(;JOOOlOOOOOOOOOOOl1000
language 00000000000110000001100000100001
data program 10001100011000100000000000000000
(for MIPS) 10001100111100100000000000000100

10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

Chapter 1 — Computer Abstractions and Technology — 8

Components of a Computer

Same components for
all kinds of computer

iz Desktop, server,
" embedded

Input/output includes

User-interface devices
Display, keyboard, mouse
Storage devices
Hard disk, CD/DVD, flash

Network adapters

For communicating with
other computers

Chapter 1 — Computer Abstractions and Technology — 9

Anatomy of a Computer

o

Output
device

Network
cable

device device

—

Input | ——, o . _}/ Input

Chapter 1 — Computer Abstractions and Technology — 10

Anatomy of a Mouse

Optical mouse

LED illuminates
desktop

Small low-res camera

Basic image processor

Looks for x, y
movement

Buttons & wheel

Supersedes roller-ball
mechanical mouse

Chapter 1 — Computer Abstractions and Technology — 11

Through the Looking Glass

LCD screen: picture elements (pixels)
Mirrors content of frame buffer memory

Frame buffer

Raster scan CRT display

|
|
|
|
' 1
|
/ol
Yy +—F __J!_______ ¢ o
/
7/
7/
K
Xy X X, X

Chapter 1 — Computer Abstractions and Technology — 12

Opening the Box

A

L

%
(s
&
§

Hard drive Processor Fan with Spot for

cover memory battery cover
DIMMs

Spot for Motherboard Fan with DVD drive

Chapter 1 — Computer Abstractions and Technology — 13

Inside the Processor (CPU)

Datapath: performs operations on data
Control: sequences datapath, memory, ...

Cache memory

Small fast SRAM memory for immediate
access to data

Chapter 1 — Computer Abstractions and Technology — 14

Inside the Processor

AMD Barcelona: 4 processor cores

HT PHY, link 1 |Slow |/0|Fuses|

128-bit FPU

= QY]
B X Load/ | L1 Data
i =| 2MB Store | Cache |[|512kB
Z | Shared - o2 Core 2
a|Ls Execution o [cache
£ | Cache | Fetch/

Decode/ | L1 Instr
Branch | Cache

- D
e D
R 4 R
2 L Northbridge
: { S
: P
NE H
el Y
1, i
R ™
x
B =
> Core 4 Core 3
T
| Q.
| =
I

i . HT PHY, link 4 |Slow I/O|Fuses

Chapter 1 — Computer Abstractions and Technology — 15

Abstractions

Abstraction helps us deal with complexity
Hide lower-level detall

Instruction set architecture (ISA)

Ap

"he hardware/software interface
plication binary interface

'he ISA plus system software interface

Implementation
The detalls underlying and interface

Chapter 1 — Computer Abstractions and Technology — 16

A Safe Place for Data

Volatile main memory
Loses instructions and data when power off

Non-volatile secondary memory
Magnetic disk
Flash memory
Optical disk (CDROM, DVD)

Chapter 1 — Computer Abstractions and Technology — 17

Networks

Communication and resource sharing

Local area network (LAN): Ethernet
Within a building

Wide area network (WAN: the Internet

Wireless network: WiFI, Bluetooth

Chapter 1 — Computer Abstractions and Technology — 18

Technology Trends

Electronics
technology
continues to evolve

Increased capacity
and performance

Reduced cost

city

Kbit capa

1,000,000 -

512M

100,000 256M

128M

16M BAM

10,000 A 4M
M

1000 256K
64K

16K

100 4

10

1G

Year of introduction

DRAM capacity

T T T T T T T T T T T T T T T 1
1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

Year | Technology Relative performance/cost
1951 | Vacuum tube 1
1965 | Transistor 35
1975 | Integrated circuit (IC) 900
1995 | Very large scale IC (VLSI) 2,400,000
2005 | Ultra large scale IC 6,200,000,000

Chapter 1 — Computer Abstractions and Technology — 19

Instruction Set

The repertoire of instructions of a
computer

Different computers have different
Instruction sets

But with many aspects in common

Early computers had very simple
Instruction sets

Simplified implementation

Many modern computers also have simple
Instruction sets

Chapter 2 — Instructions: Language of the Computer — 20

The MIPS Instruction Set

Used as the example throughout the book

Stanford MIPS commercialized by MIPS
Technologies ()

Large share of embedded core market

Applications in consumer electronics, network/storage
equipment, cameras, printers, ...

Typical of many modern ISAs

See MIPS Reference Data tear-out card, and
Appendixes B and E

Chapter 2 — Instructions: Language of the Computer — 21

http://www.mips.com/

Arithmetic Operations

Add and subtract, three operands
Two sources and one destination

add a, b, ¢ # a gets b + cC
All arithmetic operations have this form

Design Principle 1: Simplicity favours
regularity
Regularity makes implementation simpler

Simplicity enables higher performance at
lower cost

Chapter 2 — Instructions: Language of the Computer — 22

Arithmetic Example

C code:
f=0+h) -G+ 3);
Compiled MIPS code:

add tO, g, h # temp tO = g + h
add t1, 1,] # temp t1 =1 + jJ
sub £, t0, t1 # f = t0 - tl1

Chapter 2 — Instructions: Language of the Computer — 23

Register Operands

Arithmetic instructions use register
operands

MIPS has a 32 x 32-bit reqister file

Use for frequently accessed data
Numbered 0 to 31
32-bit data called a “word”

Assembler names
$t0, $t1, ..., $t9 for temporary values
$s0, $s1, ..., $s7 for saved variables

Design Principle 2: Smaller Is faster
c.f. main memory: millions of locations

Chapter 2 — Instructions: Language of the Computer — 24

Register Operand Example

C code:

f=0@+h - QO+ 3J);
f,...,jin $s0, ..., $s4

Compiled MIPS code:

add $t0, $s1, $s2
add $tl1, $s3, $s4
sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 25

Memory Operands

Main memory used for composite data
Arrays, structures, dynamic data
To apply arithmetic operations
Load values from memory into registers
Store result from register to memory
Memory Is byte addressed
Each address identifies an 8-bit byte
Words are aligned in memory
Address must be a multiple of 4
MIPS is Big Endian

Most-significant byte at least address of a word
c.f. Little Endian: least-significant byte at least address

Chapter 2 — Instructions: Language of the Computer — 26

Memory Operand Example 1

C code:
g =h + A[8];

g in $s1, h in $s2, base address of Ain $s3
Compiled MIPS code:

Index 8 requires offset of 32
4 bytes per word

Tw $t0, 32($s3) # load word
add $s1, $52,\$t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 27

Memory Operand Example 2

C code:
A[12] = h + A[8];

hin $s2, base address of Ain $s3
Compiled MIPS code:

Index 8 requires offset of 32

Tw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 28

Registers vs. Memory

Registers are faster to access than
memory

Operating on memory data requires loads
and stores

More instructions to be executed
Compiler must use registers for variables
as much as possible

Only spill to memory for less frequently used
variables

Register optimization Is important!

Chapter 2 — Instructions: Language of the Computer — 29

Immediate Operands

Constant data specified in an instruction
addi $s3, $s3, 4

No subtract immediate instruction

Just use a negative constant
addi $s2, $s1, -1

Design Principle 3. Make the common
case fast

Small constants are common

Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 30

The Constant Zero

MIPS register 0 ($zero) is the constant O
Cannot be overwritten

Useful for common operations

E.g., move between registers
add $t2, $sl1, $zero

Chapter 2 — Instructions: Language of the Computer — 31

Unsigned Binary Integers

Given an n-bit number

X=X 2" +X ,2"% 4.+ X, 2" +X,2°

Range: Oto +2" -1

Example

0000 0000 0000 0000 0000 0000 0000 1011,
=0+ ...+ 1%x23 + 0%x22 +1x21 +1x20
=0+...+8+0+2+1=11

Using 32 bits
O to +4,294,967,295

Chapter 2 — Instructions: Language of the Computer — 32

2s-Complement Signed Integers

Given an n-bit number

n-1 n—-2 1 o)
X=—X 12 "+X ,2 "4 +X2°+X,2

Range: -2"-lto+2"-1-1

Example

11171 1117 1177 1171 17171 17117 113117 1100,
—1x231 + 1x230 + + 1x22 +0x21 +0x20
—2,147,483,648 + 2,147,483,644 = —4,,

Using 32 bits
—2,147,483,648 to +2,147,483,647

Chapter 2 — Instructions: Language of the Computer — 33

2s-Complement Signed Integers

Bit 31 is sign bit
1 for negative numbers
O for non-negative numbers

—(—2"-1) can’t be represented

Non-negative numbers have the same unsigned
and 2s-complement representation

Some specific numbers
0: 0000 0000 ... 0000
-1 1111 111 ... 1111
Most-negative: 1000 0000 ... 0000
Most-positive: 0111 1111 ... 1111

Chapter 2 — Instructions: Language of the Computer — 34

Signed Negation

Complement and add 1
Complement means1 — 0,0 — 1

X+x=1111..111, =-1

X+1=-—X

Example: negate +2
+2 = 0000 0000 ... 0010,

—2=1111 111 ... 1101, +1
= 1111 1111 ... 1110,

Chapter 2 — Instructions: Language of the Computer — 35

Sign Extension

Representing a number using more bits
Preserve the numeric value

In MIPS Instruction set

addi: extend immediate value

1b, Th: extend loaded byte/halfword

beq, bne: extend the displacement
Replicate the sign bit to the left

c.f. unsigned values: extend with Os
Examples: 8-bit to 16-bit

+2: 0000 0010 => 000 0010

-2: 1111 1110 => 111 1110

Chapter 2 — Instructions: Language of the Computer — 36

Representing Instructions

Instructions are encoded in binary
Called machine code

MIPS instructions
Encoded as 32-bit instruction words

Small number of formats encoding operation code
(opcode), register numbers, ...

Regularity!

Register numbers
$t0 — $t7 are reg’s 8 — 15
$t8 — $t9 are reg’s 24 — 25
$s0 — $s7 are reg’s 16 — 23

Chapter 2 — Instructions: Language of the Computer — 37

